Drew, M. G. B. (1977). Coord. Chem. Rev. 24, 179-275.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Syntex (1973). Syntex Analytical Instruments, Cupertino, California, USA.

Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California, USA.

Vaidya, M. A., Deshpande, S. G., Jain, V. K. & Jain, S. C. (1988). Inorg. Chim. Acta, 143, 123-130.

Acta Cryst. (1993). C49, 1623-1625

Structure of a $V_2Cu_2S_4$ Cubane-Like Cluster (Et₄N)₂[$V_2Cu_2S_4(S_2CNMe_2)_2(SPh)_2$]

YU YANG AND QIUTIAN LIU*

Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, Fuzhou, Fujian 350002, People's Republic of China

(Received 14 September 1992; accepted 25 February 1993)

Abstract

The title compound, bis(tetraethylammonium) bis-(N,N-dimethyldithiocarbamato)- $1\kappa^2 S, S'; 2\kappa^2 S, S'$ bis(phenylthiolato)- $3\kappa S, 4\kappa S$ -tetra- μ_3 -sulfido-1:2: $3\kappa^3 S; 1:2:4\kappa^3 S; 1:3:4\kappa^3 S; 2:3:4\kappa^3 S$ -tetrahedro-dicopperdivanadium, is a cubane-like cluster containing a V₂Cu₂(μ_3 -S)₄ distorted-cubic core. Each V atom is chelated by a dimethyldithiocarbamate group and each Cu atom is bonded to a phenylthiolate group.

Comment

Heterometallic thiocubane clusters have attracted attention due to their relevance and importance to a wide variety of chemical, industrial and biological systems. Among the V-containing heteronuclear thiocubanes only a few complexes, with VFe_3S_4 (Kovacs & Holm, 1987) and V₂Fe₂S₄ (Rauchfuss, Weatherill, Wilson & Zebrowski, 1983) cores, have been structurally characterized. We have recently reported V₂Cu₂S₄ and V₂Ag₂S₄ cubane clusters and determined the structures of $(Et_4N)_2[V_2M_2S_4 (OC_4H_8NCS_2)_2(PhS)_2$] (M = Cu, Ag; Yang, Liu,Huang, Kang & Lu, 1992). Here, we report the crystal structure of a compound containing a $V_2Cu_2S_4$ cubic core which was obtained from an assembly reaction system including (NH₄)₃VS₄, CuCl. Me₂NCSSNa and C_6H_5SNa in the molar ratio

1:3:4:4 in dimethylformamide (DMF). This compound was crystallized from $DMF/CH_3CN/(CH_3)_2CO$ solution to give single black crystals used for X-ray diffraction.

The title compound contains well separated tetraethylammonium cations and $[V_2Cu_2S_4 (S_2CNMe_2)_2(SPh)_2]^2$ anions. There is a distorted cubic V₂Cu₂S₄ core in the anion. A crystallographically imposed C_2 axis passes through the centers of both the V-S(1)-V'-S(1') and Cu-S(2)—Cu'—S(2') units. Each V atom is chelated by a dimethyldithiocarbamate group and coordinated by three μ_3 -S atoms in a distorted square pyramidal site which is out of the equatorial plane toward the apical S(2) atom. Each Cu atom is coordinated by three μ_3 -S atoms and a terminal phenylthiolate group in a distorted tetrahedral site. The metal bond distances of 2.803 (5) Å for V...V and 2.762 (2) to 2.791 (3) Å for V...Cu, which indicate direct intermetallic contacts, are comparable to those in other V-S dimers (Duraj, Andras & Kibala, 1990: Halbert, Hutchings, Rhodes & Stiefel, 1986) and V-Cu-S clusters (Müller, Schimanski & Bögge, 1987; Scattergood, Bonney, Slater, Garner & Clegg, 1987). with $[V_2Cu_2S_4(S_2CNC_4H_8O)_2$ comparison In $(SPh)_2|^{2-}$, the anion of the title complex shows the same structural features of the core with similar bond distances and angles. The non-H atoms in the dimethyldithiocarbamate group are coplanar. The C(20)-N(20) bond distance of 1.28 (2) Å indicates a C=N double bond, strongly indicating that the dimethyldithiocarbamate group coordinates to a V atom in the form $(Me)_2N^+ = C(S^-)_2$ rather than $(Me)_2 N - C(S_2)^-$. The four C atoms in the tetraethylammonium cation, C(31), C(33), C(35) and C(37), are disordered and have the occupancies given in Table 1.

Fig. 1. Structure and atomic labelling of the $[V_2Cu_2S_4(S_2CNMe_2)_2-(SPh)_2]^2^-$ anion.

REGULAR STRUCTURAL PAPERS

Experimental		C(34)	0.374 (1)	0.643 (1) 0.495 (1)	9.1 (7)
Crustal data		C(35)	0.302(1)	0.381 ($\begin{array}{ccc} 2) & 0.4/9(1) \\ 4) & 0.276(2) \end{array}$	4.0 (0)*
Crystat aata	2	C(35a)	0.270(3)	0.420 ((4) 0.370(3)	60(5)
$2C_8H_{20}N.[Cu_2V_2(C_3H_6NS_2)_2-$	$D_x = 1.49 \text{ Mg m}^{-3}$	C(37)	0.372(1)	0.459 ((1) = 0.393(1)	4.5 (6)*
$(C_6H_5S)_2S_4$]	Mo $K\alpha$ radiation	C(37a)	0.380 (3)	0.437 (4) 0.495 (3)	5 (1)†
$M_r = 1076.5$	λ = 0.71069 Å	C(38)	0.4344 (9)	0.404 (2) 0.436 (1)	6.3 (6)
Monoclinic	Cell parameters from 20		. – .		0.0.67	
C^2/c	reflections	* Refined isotropically, occupancy of 0.67.				
a = 20.088 (0) Å	$\theta = 0-25^{\circ}$		T Kenne	a isotropicali	y, occupancy of 0.55.	
a = 20.000 (9) A b = 12.805 (4) Å	$\mu = 1.70 \text{ mm}^{-1}$				_	
D = 13.893 (4) A	T = 296 (1) K		Table 2.	Geometric	parameters (Å, °)	
c = 1/./51 (12) A	Cubio	a. a.		2 251 (5)	N(20) C(22)	1 57 (2)
$\beta = 105.07 (4)^{\circ}$		Cu = Cu		3.351 (5)	N(30) = C(33a)	1.37 (3)
$V = 4784.3 \text{ A}^3$	$0.4 \times 0.55 \times 0.5$ mm	Cu = V		2 762 (3)	N(30) - C(35)	1.56 (3)
Z = 4	Black	V_V'		2.803 (5)	N(30) - C(35a)	1.62 (5)
		Cu-S(1)		2.257 (5)	N(30)-C(37)	1.64 (3)
Data collection		Cu—S(2)		2.390 (5)	N(30)—C(37a)	1.43 (6)
MSC/Rigaku diffractometer	$R_{\rm int} = 0.041$	Cu—S(2)'		2.427 (5)	C(11)—C(12)	1.44 (2)
(1-2A scaps	$\theta_{max} = 25^{\circ}$	Cu—S(11)		2.229 (5)	C(11)C(16)	1.41 (3)
Absorption correction:	$h = 0 \rightarrow 24$	V = S(1)		2.285 (5)	C(12) = C(13)	1.35 (2)
Absorption contection.	$h = 0 \rightarrow 24$	V = S(1)		2.290 (6)	C(13) = C(14) C(14) = C(15)	1.37(3) 1 34(3)
empirical	$k = 0 \rightarrow 17$	V = S(2) V = S(21)		2.443 (5)	C(15) - C(16)	1.40 (3)
$T_{\rm min} = 0.7/1, T_{\rm max} =$	$l = -21 \rightarrow 21$	V—S(22)		2.434 (5)	C(31) - C(32)	1.69 (3)
0.986	3 standard reflections	S(11)-C(11))	1.76 (2)	C(31a) - C(32)	1.51 (6)
4542 measured reflections	monitored every 250	S(21)-C(20)	1.69 (2)	C(33)—C(34)	1.59 (3)
1829 independent reflections	reflections	S(22)C(20)	1.73 (2)	C(33a) - C(34)	1.79 (8)
1411 observed reflections	intensity variation:	N(20)—C(20))	1.28 (2)	C(35) - C(36)	1.60 (3)
$[I > 3\sigma(I)]$	insignificant	N(20) = C(21)	()))	1.49 (3)	C(35a) = C(36)	1.56 (5)
	e	N(30) - C(31)	-))	1.47(3)	C(37a) - C(38)	1.77 (6)
Refinement		N(30)-C(31	l <i>a</i>)	1.72 (6)	0(374) 0(30)	
Refinement on F^2	$w = [\sigma^2(F_a)^2 + 0.02(F_a)^2$	S(1)—Cu—S	5(2)	100.2 (2)	Cu = S(1) = V	75.8 (2)
Final R(F) = 0.067	-10^{-1}	S(1)-Cu-S	5(2)'	101.2 (2)	Cu-S(1)-V'	74.8 (2)
$m_{\rm P}(E^2) = 0.074$	$(\Delta/\sigma) = 0.04$	S(1) - Cu - S	S(11)	115.9 (2)	V = S(1) = V'	/5.5 (2)
$WR(1^{-}) = 0.074$	$(\Delta / 0)_{\text{max}} = 0.04$	S(2) = Cu = 3	S(2)	1259(2)	$C_{1} = S(2) = C_{1}$	75 7 (2)
5 = 1.55	$\Delta \rho_{\rm max} = 0.04 \ \text{e A}^{-3}$	S(2)' - Cu - C	•S(11)	119.5 (2)	Cu' = S(2) = V	74.0 (2)
1411 reflections	$\Delta \rho_{\rm min} = -0.62 \ {\rm e \ A}^{\circ}$	S(1)-V-S	(1) [']	97.9 (2)	Cu-S(11)-C(11)	110.3 (7)
231 parameters	Atomic scattering factors	S(1) - V - S(1)	(2)	107.2 (2)	V—S(21)—C(20)	88.1 (6)
H-atom parameters not re-	from Cromer & Waber	S(1) - V - S(1)	(21)	87.3 (2)	V = S(22) = C(20)	87.5 (6)
fined	(1974)	S(1) - V - S(1)	(22)	146.5 (2)	C(20) = N(20) = C(21)	121 (2)
		S(1) - V - S(1)' - S(1)' - V - S(1)' - S(1)' - V - S(1)' - S	5(21)	109.5 (2)	C(20) = N(20) = C(22) C(21) = N(20) = C(22)	123(2) 114(2)
Table 1 Engetional stands	and and and and	S(1)' - V - S(1)' - S(1)	S(22)	85.5 (2)	S(21) - C(20) - S(22)	112 (1)
Table 1. Fractional atomic coordinates and equivalent		S(2)-V-S	(21)	104.3 (2)	S(21) - C(20) - N(20)	127 (1)
isotropic thermal parameters (\check{A}^2)		S(2)-V-S	(22)	103.0 (2)	S(22)-C(20)-N(20)	121 (1)

isotropic thermal parameters $(Å^2)$

 $B_{\rm eq} = (4/3)[a^2B(1,1)+b^2B(2,2)+c^2B(3,3)+ab(\cos\gamma)B(1,2)$ $+ac(\cos\beta)B(1,3)+bc(\cos\alpha)B(2,3)].$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		x	у	z	Bea
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu	0.4139 (1)	0.3310 (2)	0.7328(1)	4.26 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v	0.5074 (1)	0.2076 (2)	0.8307 (2)	3.38 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(1)	0.4115 (2)	0.1686 (3)	0.7341 (3)	4.0 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(2)	0.5061 (2)	0.3606 (3)	0.8463 (3)	3.6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(11)	0.3116 (2)	0.4040 (3)	0.7028 (3)	4.1 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(21)	0.4475 (2)	0.1439 (3)	0.9234 (3)	4.8 (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(22)	0.5925 (2)	0.1539 (4)	0.9473 (3)	4.9 (1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(20)	0.5359 (7)	0.118(1)	1.0623 (8)	4.9 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(30)	0.3187 (7)	0.481 (1)	0.4475 (8)	4.9 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C (11)	0.3223 (8)	0.529 (1)	0.7011 (8)	3.6 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	0.3880 (9)	0.577 (1)	0.715(1)	5.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	0.391 (1)	0.674 (1)	0.715(1)	8.0 (7)
$\begin{array}{ccccccc} C(15) & 0.269(1) & 0.689(1) & 0.689(1) & 0.689(1) & 8.3(7) \\ C(16) & 0.264(1) & 0.589(1) & 0.688(1) & 5.5(5) \\ C(20) & 0.5249(8) & 0.135(1) & 0.9894(9) & 4.1(4) \\ C(21) & 0.478(1) & 0.108(1) & 1.100(1) & 6.4(6) \\ C(22) & 0.604(1) & 0.108(1) & 1.117(1) & 6.2(6) \\ C(31) & 0.261(1) & 0.531(6) & 0.395(2) & 6.4(8) \\ C(31a) & 0.266(3) & 0.511(5) & 0.505(4) & 7(2) \\ C(32) & 0.207(1) & 0.562(2) & 0.450(1) & 8.8(7) \\ C(33) & 0.361(1) & 0.537(2) & 0.521(1) & 4.6(6) \\ \end{array}$	C(14)	0.332 (1)	0.728 (1)	0.703 (1)	8.8 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	0.269(1)	0.689 (1)	0.689 (1)	8.3 (7)
$\begin{array}{ccccccc} C(20) & 0.5249 \ (8) & 0.135 \ (1) & 0.9894 \ (9) & 4.1 \ (4) \\ C(21) & 0.478 \ (1) & 0.108 \ (1) & 1.100 \ (1) & 6.4 \ (6) \\ C(22) & 0.604 \ (1) & 0.108 \ (1) & 1.117 \ (1) & 6.2 \ (6) \\ C(31) & 0.261 \ (1) & 0.531 \ (6) & 0.395 \ (2) & 6.4 \ (8) \\ C(31a) & 0.266 \ (3) & 0.511 \ (5) & 0.505 \ (4) & 7 \ (2) \dagger \\ C(32) & 0.207 \ (1) & 0.562 \ (2) & 0.450 \ (1) & 8.8 \ (7) \\ C(33) & 0.361 \ (1) & 0.537 \ (2) & 0.521 \ (1) & 4.6 \ (6) \end{array}$	C(16)	0.264(1)	0.589 (1)	0.688 (1)	5.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	0.5249 (8)	0.135 (1)	0.9894 (9)	4.1 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	0.478 (1)	0.108(1)	1.100(1)	6.4 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	0.604(1)	0.108(1)	1.117 (1)	6.2 (6)
C(31a) 0.266 (3) 0.511 (5) 0.505 (4) 7 (2)† C(32) 0.207 (1) 0.562 (2) 0.450 (1) 8.8 (7) C(33) 0.361 (1) 0.537 (2) 0.521 (1) 4.6 (6)	C(31)	0.261 (1)	0.531 (6)	0.395 (2)	6.4 (8)*
C(32) 0.207 (1) 0.562 (2) 0.450 (1) 8.8 (7) C(33) 0.361 (1) 0.537 (2) 0.521 (1) 4.6 (6)	C(31a)	0.266 (3)	0.511 (5)	0.505 (4)	7 (2)†
C(33) 0.361 (1) 0.537 (2) 0.521 (1) 4.6 (6)	C(32)	0.207 (1)	0.562 (2)	0.450(1)	8.8 (7)
	C(33)	0.361 (1)	0.537 (2)	0.521 (1)	4.6 (6)*
C(33a) 0.319 (4) 0.579 (5) 0.415 (4) 10 (2)†	C(33a)	0.319 (4)	0.579 (5)	0.415 (4)	10 (2)†

Program used to solve structure: MULTAN11/82 (Main et al., 1982). Program used to refine structure: LSFM (B. A. Frenz & Associates Inc., 1985). Molecular graphics: ORTEP (Johnson, 1976).

71.1 (2)

We gratefully acknowledge the support of the Chinese National Natural Science Foundation and the Natural Science Funds of the Chinese Academy of Sciences.

Lists of structure factors, anisotropic and refined thermal parameters, Hatom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71159 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1048]

References

S(21) - V - S(22)

B. A. Frenz & Associates Inc. (1985). LSFM. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.

- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Duraj, S. A., Andras, M. T. & Kibala, P. A. (1990). Inorg. Chem. 29, 1232-1234.
- Halbert, T. R., Hutchings, L. L., Rhodes, R. & Stiefel, E. I. (1986). J. Am. Chem. Soc. 108, 6437-6438.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kovacs, J. A. & Holm, R. H. (1987). Inorg. Chem. 26, 711-718.
 Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Müller, A., Schimanski, J. & Bögge, H. (1987). Z. Anorg. Allg. Chem. 544, 107-114.
- Rauchfuss, T. B., Weatherill, T. D., Wilson, S. R. & Zebrowski, J. P. (1983). J. Am. Chem. Soc. 105, 6508-6509.
- Scattergood, C. D., Bonney, P. G., Slater, J. M., Garner, C. D. & Clegg, W. (1987). J. Chem. Soc. Chem. Commun. pp. 1749–1750.
- Yang, Y., Liu, Q., Huang, L., Kang, B. & Lu, J. (1992). J. Chem. Soc. Chem. Commun. pp. 1512–1514.

Acta Cryst. (1993). C49, 1625-1627

Ring Cleavage of Imidazole to Oxamide by Reaction with Dioxygen in the Presence of a Cu^I-Amine Complex. Structure of μ -Oxamidato-bis[(1,4,7-trimethyl-1,4,7triazacyclononane)copper(II)] Triiodide Iodide

ULRICH FLÖRKE* AND HANS-JÜRGEN HAUPT

Anorganische und Analytische Chemie, Universität-GH Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany

INA KARPENSTEIN AND PHALGUNI CHAUDHURI

Anorganische Chemie I, Ruhr-Universität, D-44780 Bochum, Germany

(Received 11 December 1992; accepted 10 March 1993)

Abstract

An oxamidato group in a *trans* conformation bridges two trimethyltriazacyclononane moieties. Each Cu atom is fivefold coordinated by four N and one O atoms. The N and O atoms of the oxamidato ligand are disordered over two sites giving two different *trans* conformations. The cations are packed along [100] with iodide and triiodide anions between them. The I_3^- ions are disordered and have asymmetric I—I bond lengths.

Comment

This work stems from our interest in the polynuclear complexes of copper(II) with multi-atom bridging ligands (Chaudhuri et al., 1992; Chaudhuri & Oder, 1990). In this paper we present the isolation, although in very low yield, and characterization of an oxamidato-bridged binuclear copper(II) complex, which results from the oxidation of an imidazolate ring, presumably by dioxygen in the presence of a Cu^I-amine unit. Activation of oxygen by Cu^I complexes is of particular interest as a model for a number of copper proteins, such as haemocyanin, tyrosinase and ascorbate oxidase. Imidazole itself is reasonably resistant to oxidation (Katritzky & Rees, 1984), being attacked only by strong oxidizing agents such as MnO₄and various peracids. These reactions usually result in ring degradation, leading to ammonia or ammonia derivatives and aliphatic carbonyl compounds, while hydrogen peroxide has been reported to oxidize some imidazoles to oxamide.

The structure consists of dinuclear $[(LCu)_2(\text{oxam})]^{2+}$ cations (L = trimethyltriazacyclononane and oxam = oxamidato), and both I^- and I_3^- anions. The geometrical centre of the oxamide which bridges the two CuL moieties is situated on a crystallographic inversion centre. The Cu atoms reach distorted square-pyramidal configurations with three N and one O ligand atoms in the equatorial plane with bond distances of Cu-N(L)= 2.039(9) and 2.039(8) Å, and Cu-N,O(oxam) = 1.993 (7) and 1.998 (6) Å. A fourth N atom from the L ligand completes the coordination in the axial position with a distinctly longer Cu-N(1) bond length of 2.255 (10) Å. This geometry has been observed previously in other square-pyramidal L complexes of copper(II) (Chaudhuri et al., 1991, 1992). The N₃O coordination plane around the copper and the plane of the oxamidato group form a dihedral angle of 8.6°. The distance between the two copper centres is 5.229 (2) Å which is in the range of other reported dicopper oxamidato structures: 5.189 (2) (Bencini, Di Vaira, Fabretti, Gatteschi & Zanchini, 1984), 5.192 (2) (Okawa, Matsumoto, Koikawa, Takeda & Kida, 1990) and 5.290(1) Å (Lloret, Julve, Faus, Journaux, Philoche-Levisalles & Jeannin, 1989). In these structures, the copper has four, five and sixfold coordination.

During refinement the anisotropic displacement parameters of the oxamidato N and O atoms indicated positional disorder which was successfully treated by a split model with half occupation of positions X1 and X2 with both N and O atoms. This leads to two indistinguishable *trans* conformations of the oxamide. The disorder is also reflected by the equal Cu-X (X = N, O) bond lengths of 1.993 (7) and 1.998 (6) Å. In the structures of Bencini *et al.* (1984) and Lloret *et al.* (1989), with unambiguous N and O positions, the Cu—N bonds are clearly shorter [1.899 (6) and 1.924 (3) Å, respectively] than the Cu—O